A nonribosomal peptide synthetase (Pes1) confers protection against oxidative stress in Aspergillus fumigatus.

نویسندگان

  • Emer P Reeves
  • Kathrin Reiber
  • Claire Neville
  • Olaf Scheibner
  • Kevin Kavanagh
  • Sean Doyle
چکیده

Aspergillus fumigatus is an important human fungal pathogen. The Aspergillus fumigatus genome contains 14 nonribosomal peptide synthetase genes, potentially responsible for generating metabolites that contribute to organismal virulence. Differential expression of the nonribosomal peptide synthetase gene, pes1, in four strains of Aspergillus fumigatus was observed. The pattern of pes1 expression differed from that of a putative siderophore synthetase gene, sidD, and so is unlikely to be involved in iron acquisition. The Pes1 protein (expected molecular mass 698 kDa) was partially purified and identified by immunoreactivity, peptide mass fingerprinting (36% sequence coverage) and MALDI LIFT-TOF/TOF MS (four internal peptides sequenced). A pes1 disruption mutant (delta pes1) of Aspergillus fumigatus strain 293.1 was generated and confirmed by Southern and western analysis, in addition to RT-PCR. The delta pes1 mutant also showed significantly reduced virulence in the Galleria mellonella model system (P < 0.001) and increased sensitivity to oxidative stress (P = 0.002) in culture and during neutrophil-mediated phagocytosis. In addition, the mutant exhibited altered conidial surface morphology and hydrophilicity, compared to Aspergillus fumigatus 293.1. It is concluded that pes1 contributes to improved fungal tolerance against oxidative stress, mediated by the conidial phenotype, during the infection process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi.

In fungi, nonribosomal peptide synthetases (NRP synthetases) are large multi-functional enzymes containing adenylation, thiolation (or peptidyl carrier protein, PCP) and condensation domains. These enzymes are often encoded within gene clusters. Multiple NRP synthetase ORFs have also been identified in fungi (14 in Aspergillus fumigatus). LeaA, a methyltransferase, is involved in secondary meta...

متن کامل

Review Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi

In fungi, nonribosomal peptide synthetases (NRP synthetases) are large multi-functional enzymes containing adenylation, thiolation (or peptidyl carrier protein, PCP) and condensation domains. These enzymes are often encoded within gene clusters. Multiple NRP synthetase ORFs have also been identified in fungi (14 in Aspergillus fumigatus). LeaA, a methyltransferase, is involved in secondary meta...

متن کامل

Nonribosomal peptide synthetase genes pesL and pes1 are essential for Fumigaclavine C production in Aspergillus fumigatus.

The identity of metabolites encoded by the majority of nonribosomal peptide synthetases in the opportunistic pathogen, Aspergillus fumigatus, remains outstanding. We found that the nonribosomal peptide (NRP) synthetases PesL and Pes1 were essential for fumigaclavine C biosynthesis, the end product of the complex ergot alkaloid (EA) pathway in A. fumigatus. Deletion of either pesL (ΔpesL) or pes...

متن کامل

Distinct Roles for Intra- and Extracellular Siderophores during Aspergillus fumigatus Infection

Siderophore biosynthesis by the highly lethal mould Aspergillus fumigatus is essential for virulence, but non-existent in humans, presenting a rare opportunity to strategize therapeutically against this pathogen. We have previously demonstrated that A. fumigatus excretes fusarinine C and triacetylfusarinine C to capture extracellular iron, and uses ferricrocin for hyphal iron storage. Here, we ...

متن کامل

Disruption of a nonribosomal peptide synthetase in Aspergillus fumigatus eliminates gliotoxin production.

The fungal secondary metabolite gliotoxin produced by Aspergillus fumigatus has been hypothesized to be important in the development of invasive aspergillosis. In this study, we addressed this hypothesis by disrupting a nonribosomal peptide synthetase (NRPS) (encoded by gliP) predicted to be involved in gliotoxin production. Mutants with a disrupted gliP locus failed to produce gliotoxin, which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The FEBS journal

دوره 273 13  شماره 

صفحات  -

تاریخ انتشار 2006